II B.Tech - II Semester - Regular Examinations - JULY 2022

DIGITAL AND ANALOG CIRCUITS (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
 Max. Marks: 70

[^0]
UNIT - I

1. a) Perform the binary arithmetic operations on (-14)-(-2) using signed 2's complement representation.
b) Prove that if $w^{\prime} x+y z^{\prime}=0$, then $w x+y^{\prime}\left(w^{\prime}+z^{\prime}\right)=w x+$ $x z+x^{\prime} z^{\prime}+w^{\prime} y^{\prime} z$.

OR
2. a) For the given function
$\mathrm{T}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,5,7,8,10,14,15)$
i. Show the K-map.
ii. Find a minimal expression and realize using basic gates.
b) i. Convert the number $(127.75)_{8}$ to base 10 , base 3 , base 16 and base 2 .
ii. Given that $(64)_{10}=(100)_{b}$, determine the value of b.

UNIT - II

3. a) Design a combinational circuit to find the 2 's complement of a given 4bit binary number and realize using NAND gates.
b) Prove that NAND and NOR gates are Universal gates. 7 M

OR

4. a) Design a 3-bit parity checker/ generator circuit that can generate even parity using logic gates.
b) Design a code converter logic circuit which converts BCD code to Excess-3 code.

UNIT-III

5. a) Convert RS flip flop to a i) D-latch ii) T-latch. 7 M
b) Design an universal shift register of 4 bit.
6. a) Using D-Flip flops and waveforms, explain the working of a 4-bit SISO shift register.
b) With the help of clocked JK flip flops and waveforms, explain the working of a 3-bit binary ripple counter. Write truth table for clock transitions.

UNIT - IV

7. a) Explain the summer and difference amplifier using IC 741 and explain its operation.
b) Explain the operation of $1^{\text {st }}$ order band reject filter along with circuit diagram.
8. a) Draw the Schmitt Trigger circuit and explain its operation in detail.
b) Draw the RC phase shift oscillator using 741 Op-Amp and explain its operation.

UNIT - V

9. a) Draw the block diagram of R-2R DAC and explain its operation in detail. 7 M
b) Draw the block diagram of successive approximation ADC and explain its operation in detail.

OR
10. a) What output would be produced by a DAC whose output range is 0 to 10 V and whose input binary number is
i. 10 (for a 2-bit DAC)
ii. 0110 (for a 4-bit DAC)
iii. 10111100 (for a 8-bit DAC) 7 M
b) Draw the circuit diagram of flash type ADC and explain its operation in detail.

[^0]: Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
 2. All parts of Question must be answered in one place.

